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ABSTRACT
Multiple linear regression theory provides an estimated co—

variance structure for the estimates of the parameters of the
linear function based on given data. However, when the deviation
form is used to calculate these parameter es timates , the por tions
of this matrix which involve the constant term are generally
missing. This report presents equations which can be used to
calculate these missing covariances from quantities which are
generally available.

Most standard regression references discuss calculation of
confidence limits for point estimates of the dependent variable
when these point estimates are calculated from the regression
equation. This report presents equations for similar limits for
the independent variables , again from quantities generally avail-
able when a deviation—form routine is used . A different inter-
pretation is suggested for these limits than is seen in the
references.

A numerical example is provided .

ADMINISTRATIVE INFORMATION
This report is a result of work performed under Program Element 60000N ,

Task Area OMN, and Work Unit 1—1870—003.

1. INTRODUCTION
Multiple linear regression is a method of determining a linear

relationship between a dependent variable and a collection of independent

• variables. The dependent variable is assumed to be equal to the sum of a

linear function of the independent variables and a random variable which

has zero mean and unknown variance. Multip le linear regression provides
the (least squares) best estimates of the parameters of the linear function

based on given data. In addition , it also can provide indications of how
well the calculated linear function fits the data , how much the parame ter
estimates might vary from the “true” values, and how much point es t imates

obtained by using the calculated regression equation might vary from the

“true” values.
The calculations involved in determining the parameter estimates and

other quantities may be provided in either of two forms. The standard form

determines a constant term and a coefficient for each of the independent



variables. The deviation form replaces each data value for each variable

with its deviation from the sample mean (for that variable) and determines

only the coefficients. The constant term is readily calculated from the

means of the variables and the other parameter estimates. Other quantities,

although also available by calculation, are generally ignored in a dis-

cussion of the deviation form. It is the purpose of this report to develop

expressions for these quantities.

Many books and papers have been written on multiple linear regression.
• 

The reader is assumed to have been familiar at one time with the techniques

involved. However, sufficient review is given that this familiarity need

not be recent. Some of the better known facts will be stated without proof
1*in this report. For background the reader is referred to Acton, Draper

. 2 3and Smith or Johnston. Johnston is the primary reference used by the

author.

Multiple linear regression theory provides an estimated covariance

structure for the parameter estimates. However, when the deviation form

is used to calculate these parameter estimates, the portions of this matrix

which involve the constant term are generally missing. This is the case,

for example, when the International Mathematical and Statistical Libraries

(IMSL) routines4 RLSTEP and RLFORC are used in a stepwise multiple linear

regression application. This report derives equations which can be used to

calculate these missing covariances from quantities which are generally

available : the sum of the squared residuals, the means of the variables ,

and the remainder of the estimated covariance matrix.

Most standard regression references discuss calculation of confidence

limits for point estimates of the dependent variable when these point

estimates are calculated from the regression equation . Some (for example,
1 . . . .  .Acton ) also discuss similar limits for similarly obtained point estimates

for the independent variables. However, these discussions generally are

restricted to cases in which there is a single independent variable. Also ,

the deviation forms are not considered in this context . Equations are

derived in this report for calculation of such limits in cases in which

*A complete listing of references is given on page 29.
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there is more than one independent variable and the regression equation

has been calculated using the deviation form. In this report a different

interpretation is suggested for these limits than is seen in the references.

Section 2 reviews the assumptions involved in use of a multip le linear

regression procedure. The notation used throughout the report is also

introduced in this section.

Section 3 provides a basic review of multiple linear regression and

states the pertinent equations used in calculating the parameter estimates

and other quantities when the standard form is used .
• Section 4 develops similar equations using the deviation form.

Equations are included for the complete estimated covariance matrix of the

parameter estimates. A familarity with some simple matrix operations is

necessary for a proper understanding of this section.

Section 5 specifies, step by step , the numerical procedures to be

followed in the application of multiple linear regression as described in

Section 4. In particular , the matrix equations of Section 4 are rewritten

in a nonmatrix form which can be used in a computer program . The limits

on predicted values of an independent variable are discussed in this

section.

A numerical example is provided in Section 6. This example follows

the step—by--step procedure given in Section 5. It is of sufficient

complexity to exemplify each step and yet of sufficient simplicity to

allow hand calculation.

A final section provides a summary.

2. ASSUMPTIONS AND NOTATION

Given a dependent variable Y and k — 1 independent variables

X3, .. ., X~K
, multiple linear regression assumes a model of the form

Y b 1 + b 2X2 + b 3
X
3
+... + b kXk +u  

(1)3



where the parameters b1, b2, ..., bk 
are fixed constants and where u is a

random variable with zero mean and constant, but unknown, variance w
2.

Generally , Y must be a random variable since u is, but the independent

variables are assumed to be nonrandom. Note that it is not necessary at

this point to assume that the random errors u are normally distributed .

The assumed nonrandomness of the independent variables means that the

values of these variables have been measured accurately and are therefore

known exactly. Strictly speaking, randomness in the independent variables

(for example, inaccuracies in measuring and recording their values)

violates this assumption. However, this fact is usually ignored when re—
• gression is applied, the prevailing feeling being that the (hopefully

small) randomness in the independent variables can be considered as a part

of the randomness in u. The robustness of the method often provides useful

results in such cases.

In general, column vectors are favored over row vectors in this report.

The transpose of a vector or matrix is indicated by a prime. For con-

venience, each vector will be introduced in terms of its transpose. Thus ,

b, the vector of parameters, is introduced by b’ = (b1,b2,... ,bk
).

The vector, all of whose components are zero, is denoted by 0. The

vector , all of whose components are one, is denoted by 1. When used , th:

size of these vectors is clear from the context. Similarly, the dimension

of any identity matrix, I, is clear from its use.

The data are assumed to be arranged in k—tup les, called data points.

The i-~~ data point is (X211X3~,. . . ,Xki,Y I), where is the i~-~ observed

value of the dependent variable and X .1 is the i-~-~ observed value of the
th -~

j— independent variable. There are assumed to be n data points. The

values in each point are assumed to be associated according to Equation (1),

so that

= b1 + b2X2~ + ... + bkXki + U
I 

(2)

where u~ is some unknown value of the random variable u. In matrix form

Equation (2) may be written

4



~~~~~~~~~~~—-~

--
~~
- --—

Y Xb + u (3)

where Y ’ = (Y 1,Y2,.. .,Y), b’ = (b1, b2 , .  . ., bk ) ,  u ’ = (u 1, u2 , . . .  ,u ) ,  and

1 X21 X
31 

... Xkl

1 X22 X 32 ... Xk2

X =  . . . ... . (4)

l x  x ... x
— 

2n 3n kn

It is further assumed that no values are missing. That is, a data

point is not used in the regression unless all variables in it have values.

The sample mean of a variable is denoted by a bar above the variable

name. Thus,

~ ~~~~ ~ =

~J =(
~~~~

.‘

~~
31) 

/n

The deviation of a variable from its sample mean is denoted by replacing

the upper case symbol by the corresponding lower case symbol:

yf 
= Y~ —



xj i = x j i
_
~~j

• The sample variances, covarian’~es, and correlations are easily expressed

in terms of these deviations.  For examp le:

var(X.) ~~~ / (n-l)

• 
cov(X .,Xh ) 

(
~~~~

x
J~
xh~
) 

/ (n-l)

corr(X .,X.~) 
=(~~~~~

x
~~

xh~)/ (~~~~xj~)2(~~~~xh~~~
2

For each j 1, 2 , ..., k , multip le linear regression f inds an esti—

mste B . for the value of the  para:neter b . in Equation (1). The result ,

then , is the regression equation :

Y = B1 + B2X2 ÷ B3X3 
+ ... + BkXk (5)

which can be used to arrive at an estimated value for any variable given

values for the otr~ers. (Caution: No guarantee has yet been given concern—

ing the accuracy of such estimates.) In particular , for i = 1, 2 , ..., a ,

= B1 
+ B

2X2. + B3X3. 
+ ... + BkXki (6)

is the estimated , or predicted , value of Y in the i~~ data point. This

value can be compared to the actual value, Y ., . The difference 

_~~~~~~~~~~~~~~ _~_ _ ~~__ _±_ ~~~~ --~~~- -~~—.. - •~~~~~~~~
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• e . = Y . - Y . (7 )
• i 1 1

is called the residual and represents what must be added to the predicted

value to get the actual value. In matrix form the vector of residuals ,

e = (e1,e2,.. .e ), is given by

e = Y — Y = Y — X B  (8)

Note from Equation (7) that e
~ 

is an estimate of the value of u .. This

fact is used in the next section to arrive at an estimate for w
2.

The matrix Equations (3) and (8) provide a starting point for an

elegant development of the multiple linear regression equations given

without proof in the next section. The interested reader is referred to

Johnston,3 Chapter 5.

In addition to the data matrix in standard form given in ~.quation (4),

the data matrix in deviation form:

x2l x3l 
... Xki

X 22 x 32 ~~~~~ 
Xk2

x . . ... . (9)

x x . . .  x2n 3n kn

will also be used .

In addition to the assumptions given earlier in this section , it is

necessary to assume that the random variable u is normally distributed in

order to derive confidence intervals. For other results, however , this



assumption is not needed. On the other hand, it is always necessary to

assume independence of u~ and for i not equal to h. Relaxation of many

• of the assumptions stated here is considered in Johnston.

3. STANDARD REGRESSION EQUATIONS

In this section the standard multiple linear regression equations are

presented in matrix form. Since development of these equations is con-

tained in any good book on regression analysis, it is not repeated here.

Recall from the previous section that X is the data matrix in standard

form, Y is the vector of sample values of the dependent variable, b is the

vector of regression parameters, B is the vector of parameter estimates,

is the variance of the random variable u (see Equation (1)), and e is

the vector of residuals. Also used in this section is the vector of

deviations of the value of the dependent variable about its mean:

~>‘1 2 ’~~~ ,y ).

The objective of multiple linear regression is to determine the vector

B which will minimize e’e, the sum of the squared residuals. The vector B

which accomplishes this objective is given by

= (X ’XY~ X’Y (10)

The matrix X’X is a square symmetric matrix called the information matrix.

Note that each B~ is a linear combination of the random variables

,Y .  (The elements of X were assumed to be nonrandom.) From the

assumptions imposed upon u, it is determined that

E(B) = 1, (11)

var(B) = w2(X’X)~~ (12)

So B is an unbiased estimator of b (that is, B~ is an unbiased esti-

mator of b~ for each j = 1, 2, ..., k). The Gauss—Markov Theorem on 
least8



_ _ _  
•
~~~~~~~~~~~~

• • - .-
~~~~~~~

--,—a ,-, . --

- I

squares indicates that B is the best linear unbiased estimator of b. Al-

though Equation (12) gives the covariance structure of B, w
2 is unknown an~

var(B) cannot actually be determined. However, with the choice of B given

in Equation (10), the expected value of the sum of the squared reFiduals

is given by

E(e’e) = (n—k)w2 (13)

Thus, w
2 can be approximated

2 
= (e’e)/(n—k) (14)

From the approximation of Equation (12), an estimated covariance matrix

for B is found to be

var (B) v2(X ’X)~~ = (e’e) (X ’X) 1/(n—k) (15)

The coefficient of multiple correlation, R
2, often used as a measure

of the goodness of fit of the regression equation to the given data, is

calculated from

2 ,R = 1 — (e e)/ (~ ~) (16)

The regression equation, Equation (5), can be used to determine a

predi.~ted value for the dependent variable given values for the independent

variables. On the assumption that u (and therefore Y and B) is normally

distributed , confidence limits may be placed around this prediction. For

example, suppose that it is desired to determine such confidence limits for

Y when X~ = Z~ for j = 2, 3, ..., k. For 7.’ = (l , Z2, Z3, . .  . ,Zk), ~ is

normally distributed and

E (Y ) = Z ’b (17)

9
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var(Eff)) = w
2
V (X’X)~~~Z (18)

var (Y) = w
2
(1 + Z ’ (X’ X)~~~Z) (19)

However , e ’e has a chi—squared d is t r ibut ion with n—k degrees of f reedom

• and is independent of Z’B. The confidence limits are found , by shifting

in the usual way to a Student ’s t distribution , to be, for E(Y),

Z’B ± tvjZ’(X’X)~~ Z (20)

and , for Y ,

z ’B ± tv~~~~~ Z
I(XIX)~~ z (21)

where t is a critical point from a t distr ibution with n—k degrees of

freedom. If r is the desired significance level, then t is the (1 — r/2)

critical point. (For example, for 90 percent confidence limits the sig-

nificance level is r = 0.1, and t would be found in the 0.95 column of the

table of t distribution points.)

The regression equation can also be used to calculate a predicted
• 

I value for one of the independent variables given values for the dependent

variable and each of the other independent variables. Limits similar to

confidence limits, can also be calculated in this case. These limits will

be discussed in Section 5.

4. REGRESSION EQUATIONS IN DEVIATION FORM

In this section the deviation form equivalents for Equations (10),

• (12), ( 15), (17), (18), (19) , (20), and (21) are presented . As noted in

the introduction , the deviation form equivalent of Equat ion (15) does not

contain the portion of the estimated covariance matrix ~ the parameter

estimates which deals with the constant term . Equations for these co—

variances are derived in this section.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



First, consider the structure of X’X and x’x. From Equation (4), the

definition of X, note that

oX’
X ’X = 

— 
(22)

S

where ~ = (x2,x3,... ,5ç) and S is the (k.-1)x(k--l) matrix having at the
intersection of its (s—l)-~~ row and its (t—l)-~~ column the element

S5_ 1,~~~1 
= 

~~~~~
X 51X

~~ 
(23)

From Equation (9), the definition of x, it is seen that the element at

the intersection of the (s—l)-~~ row and the (t—l)-~~ column is given by

(x’x) 5_1,~~ 1

= ~~~~~~~~~~ - n
~s~ t 

(24)

From a comparison of Equations (23) and (24), the matrix form for

Equation (24) is found to be

x ’ x = S — nXX ’ (25)

The relationship between the inverses of X’X and x’x is clarified by

an examination of the matrix



.--, .- • -•~~~~ —~~ -— -~~-.,~~~~~~~~~~~~~~~
, -— . •— —-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

11/n 
~‘1

Q 1  — I (26)

L~ 
I ]

Then,

1

Q(X ’X) 
— 

(27)
0 x’xJ

Inversion of Equation (27) shows that

1

(X’X)~~Q~~ = 
1 

(28)
0 (x ’x)

When both sides of this last equation are multiplied on the right by Q as
defined in Equation (26),

+ ~‘(x’x)~~~ -~‘(x ’x)~1
(X ’ X)

4 
= I 1 1 

(29)

L -(x ’x) X (x ’x) J
Consideration is next given to the form of X ’Y and x ’y .  If X. is the

submatrix of X found by eliminating the first column of X (consisting of

all ones), it is found that

x ’~ = X . ’~i — nYX (30)

This is the matrix equivalent of

X~ 1Y i 
- nX~ Y (31)

12
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It is also found that

• . / n Y \
X ’Y =( J (32)

The deviation form equivalent of Equation (10) is

B. = (x ’x)~~ x ’y (33)

From Equations (10), (29), (30), (32), and (33), it is determined that

+ nYX’(x ’x)~~X -

\ -nv(x ’xy~ + (x ’xY1X. ‘Y

fi -

(34)
B.

That is, B. is the subvector of B found by eliminating B1. Furthermore ,

B1 may also be found from Equation (34):

B1 
= Y — X ’B. (35)

Note that Equations (15) and (29) y ield the estimated covariance mat r ix

for B in terms of x ’x and the sample means :

2 , — lv a r ( B .)  = w (x x)

(e ’e)(x ’x)~~ / ( n —k)  (36) 

~~~~~~~~~~~~~~~ - -~~~~~~~~~ • . •  ~
_
~•i~ --~~~~~ - . .• • --~~~~~~~~~~



• --- • -

1~
cov(B . , B1

) = —w2~ ’(x ’x)~~

(37)

var(B
1
) = w2(1/ n + X ’ (x ’xY~

1i)

(e ’e) (l/n  + ~ ‘(x ’x)~~~~) / ( n — k )  (38)

Finally, consideration is given to estimation in the deviation context.

Since all the elements of B may be calculated from Equations (33) and (35),

point estimates may be calculated from the regression equation ,

• Equation (5) ,  or from the deviation form of Equation (5) , which is:

• 
= B

2
x
2 

+ B
3x3 

+ ... + Bkxk 
(39)

As in the preceding section, suppose that confidence limits for Y are

desired when X . = Z .., for  j = 2 , 3, ..., k. If Z.’ = (Z 2,Z3,...,Zk
) and

z ’ = V — X ’  = (z 2 , . . .  , zk) ,  where z . = 7. . — X~ , for each j ,  then

z ’(x ’x)~~~z = Z. ’(x ’x)~~~Z. —

— ~ ‘ (x ’ x)
4Z + X ’(x ’x )X (40)

Thus, Equation (29) implies that

Z ’ (X ’X Y 1Z = 1/n + z ’(x ’x)~~~z (41)

When this result is used in Equations (18) through (21), the deviation

equivalents are:

2 —lvar(E(y)) = w (1/n + z ’( x ’x) z) (42)

~



var( ) = w
2 [ (n+1)/n + z t ( x ? x)

_ 1
z] (43)

z’B. ± tvp4/n + z’(x’x) 1z (44)

z’B. ± t vy ~n+l)/n + z’(x’xY
1z (45)

where Equations (44) and (45) are confidence l imits for  E ( y )  and ~~~~,

respectively . As in Section 3, v is as given in Equation (14) and t is a

critical point from a t distribution with n—k degrees of freedom . The

confidence limits for Y may be obtained from Equation (45) by adding the
mean ‘1 to the limits for ~~~~. Equivalent to Equation (17) is

E ( y )  = z ’b. (46)

where b.’ = (b2,b3,... ,bk).

In the next section some of the matrix equations of this section are

put into a form more amenable to numerical calculation.

5. NUMERICAL PROCEDURES

Suppose a set of n data points is available for performance of a

multiple linear regression. This section sets forth the steps of the

numerical procedure to be used in accomplishing this regress ion and
determining the other information discussed in earlier sections. The

deviation form equations of the preceding section are used here.

The firs t step is to develop the matrix x ’x and the vector x’y. This

may be accomplished with a single pass through the data by accumulating

(a) ~~~~~~~~~
i=l

(b)

~~~~~~~~~~~ - •• ~~~~~~~~~



n

(c) X ..X .3]. mi
i= 1

(d) x ..Y .

for each j ,m = 2 , 3 , ..., k. The means X . and Y are found by dividing (a)

and (b), respec tively, by n. These means are then used with (c) to de-

termine the elements of x’x from Equation (24), and with (d) to determine

the elements of x ’y from

(x ’y) 1 
= ~~~~~ x i y i

n

= 
2d 

x .Y . - nX ‘I’ (47)
S i ] .  S

i= 1

So that R2 may be calculated from Equation (16), should also be

accumulated and used to determine y ’~ from

= ~~~~~~~ — V 2 (48)

Since the means will be required later , they should be retcined . Porn and

McCracken 5 indicate in Sections 3.5 and 7.8 t h a t  t h i s  sing le pass method

16
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may not be as accurate numerically as a two—pass method in which (a) and
(b) are accumulated on the first pass and the sums (over 1) of xjjxmi~
x .~ y1, and y1 on the second pass.

The second step is to inver t x ’x. Most modern computers have

reasonably accurate matrix inversion routines available. For convenience

the element of (x’x)~~ at the intersection of row s and column t will  be

denoted by c
5+1~~ +1. That is ,

~22 c23 c2k

C 32 c33 C 3k

—1(x x) = . . ... . (49)

Ck2 ck3 
... Ckk

The third step is to determine the estimates of the regression

parameters. For j = 2 , 3, ... , k , these estimates are calculated (see

Equation (33)) from

B . = 

m=2 (
~~

‘
~~~1) 

(50)

The value of B
1 
may then be calculated (see Equation (35)) from

B1 
= V - ~~~~~~~~~ (51)

a

_ _ _



•~~~~~~~~~~~~ ~— i~--

The regression equation , Equation (5) ,  is now known and can be used to

arrive at a point estimate for Y, given values X
2 

= Z 2, X3 
=

Xk = Zk fo r the independent variables. It can also be used to arrive

at a point estimate for independent variable X given Y = Y’ and , for

j = 2 , 3, ... , m—l , m+l , ..., k , X . = Z . from

m 

= 

(T~ - 

~1 
- /Bm (52)

where refers to the sum exclusive of the m~~ term.

The next step is to calculate R2 from Equation (16). Equations ( 5 )

and (7) may be used and a pass may be made through the data to calculate

the residual associated with each data point. The sum of the squared

residuals can then be accumulated and used in Equation (16) to calculate

R2. An alternative procedure , which does not necessitate calculation of

the individual residuals, is based on the fact (see Johnston,3

Equation (5.22)) that

e ’ e = y ’~ 
— B.’x’y

= - ~~~~~~ 

~~ 
(53)

j=2 i=1

This leads to

R2 
~~~~~~~~ 

(.~~~
‘x

~ i~
i)] 

/~:‘~ 
(54)
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In addition, Equation (53) can be used in Equation (14) to provide the

fo llowing estimate of w2 , the variance of the dependent variable :

2 .  2w v

- B . (~~±~±)] /(n-k) (55)

The fifth step is to calculate the estimated covariance structure of

the parameter estimates from Equations (36), (37), and (38). From

Equation (38) the estimated variance of B1 
is seen to be

var (B 1) v2 
(1/n + 

s=2 
~.~~~

‘c t~~~ t) 
(56)

For j = 2 , 3, ..., k, Equation (37) indicates that

cov(B ., B1) - v2 c~5X5 
(57)

Finally, for j,m = 2 , 3, ..., k , Equation (36) yields

cov(B ., B ) v
2c . (58)

j  m jm

For any given set of values , X2 
= Z 2 , X

3 
= Z3, ..., Xk = Zk ,

confidence limits at various levels of significance can be calcula ted f or

the dependent variable using Equation (45). For l0O(l—r) percent

confidence limits use

19



I ,
Bi +ZB .Z .

• j=2

± tv~~~~+l)/n + ~~~~~ Zcst(Zs
_
~s
)(Zt

_
~t
)

s=2 t=2

where t is the (1 — r / 2 )  cri t ical  point from a t d i s t r ibu t ion  wi th  n—k

degrees of freedom. Note that the point estimate of the dependent variable

given by Equation (5) is midway be tween these limi ts and tha t the leng th of
the interval bounded by these limits is 2t times the square root of the

estimated variance of the point estimate (see Equation (43)).

Converting Equation (59) to a probability statement produces a method

of calculating limits, similar to confidence limits , for  the predicted

value of an independent var iable , given values for the dependen t var iable
and each of the other independent variables. Since the independent

var iables are no t random (see Section 2) , these limits are not truly
confidence limits. However, they do have a potentially useful inter-

pretation as a spe”-ification of the range of values for the independent

variable for which a particular value lies within a confidence interval for

the dependent variable.

Suppose tha t values have been spec if ied for  X 2 , X3, ..., xm l ,
Xm+l~ 

.., Xk as above. Suppose further that it is desired to find the

values of X
m 

for which Y = Y ’ will lie in a lOO(l—r) percent confidence

interval for (the random variable) Y. For each value Z of X ,

k

prob Y — B  — Y’B.Z. ~1 
~~~~~~

.. 3 3
j=2

tv

p

L+l)/n + 

s=2 
~~~~

‘
cst (s~~s

)(7.t~~t))

1 — r  (60)

20 
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If the inequality within the braces in Equation (60) is solved for the

unknown Z with Y = Y ’ , the values of X for which Y = Y’ lies in am m
100(l—r) percent confidence interval for Y may be determined .

The result of such an algebraic procedure is

fZ2 + gZ + h ~~~O (61)

where

f = B2 - t
2
v
2c (62)m mm

k m

g = — 2t2v
2 ) ‘

~~. (Z.—X .)  — c
• ~~~~~j m j  j  sim m

• j = 2

k m
— 2B Y ’ — B1 — ~~~~

‘
B.Z. (63)

j =2

2
k m

h = Y ’ — B1 - - t
2
v
2 (n+l) /n

j=2

k m k m

+ 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~

- 2~ .(Z.-~ ) + c ~2 (64)
m mj j  j s i m m

~~ IiIIIIlFItIIllIiilI1II •uIIlIIIuuIIL__ 
~~~~ ~~~~~~~~~~~~~~~~ 

.. 
~~~~~~~~~~~~~~~~~~ ~~~ 
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The zeros of the function on the left side of Equation (61) can be

determined using the quadratic formula. If this function has no real

zeros , Y = Y’ lies in the confidence interval for all values of X

(provided X
1 

= Z1, ... , X 1 Z 1, X~~1 
= Z +l, = Z

k
). Ot h i

the zeros may be denoted by Z
u 
and Z , Z being the larger of the two

values. Then Equation (61) may be used to determine the values of X for

which Y = Y’ lies in the confidence interval. These values are all those

between Z and Z , if X from Equation (52) is between Z and Z , and all

values le:s than or equ~1 to Z
e 

or larger than or equal to otherwise.

It should be remembered that the last few paragraphs depend on the

assumption that the random variable u (and therefore the dependent

variable) has a normal distr ibution, as well as the o ther  assumptions

stated in Section 2. Such normality assumptions imply normality of the

residuals. If the residual is calculated for each data point , a standard

normality test will indicate how valid such an assumption may be.

6. A NUMERICAL EXAMPLE
The example discussed in this section is discussed in some de tail by

Draper and Smith ,
2 
although they do not cover some of the details con-

sidered here. The development presented here follows the steps of the

prec eding section.

The da ta cons ists of n = 13 da ta poin ts, each point consisting of a
value of a dependent variable, Y, and each of two independent variables , 

•

X2 and X3
. The data are listed in Table 1. Note, for example, that

X2 4  = 11, X3 6  
= 55, and Y7 

= 102.7.

22
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TABLE 1 - DATA FOR NUMERICAL EXAMPLE

• Data Point
Number 2 3

1 7 26 78.5

2 1 29 74.3

3 11 56 104.3

4 11 31 87.6

5 7 52 95.9
• 6 11 55 109.2

7 3 71 102.7

8 1 31 72.5

9 2 54 93.1

10 21 47 115.9

• 11 1 40 83.8

12 11 66 113.3

13 10 68 109.4

I

~~~~~~~~~~~~~~~~~~~~~~~~



Step 1: 
1: 

~~ = 7.461538 = 1139

= 626 X
3 

= 48.153846 ~~~~~~~ = 33050

= 1240.5 V = 95.423077

13 13

= 4922 ~~~~~~~~ = 121088.09

= 10032 

1: 

= 62027.8

415.230769 251.076923

X I X =

251.076923 2905.692310

/ 775.961538

x ’y

\ 2292. 953850

= 2715.7631
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0.00254 1066 — 0.0002195701

—l
Step 2: (x x) =

— 0.0002195701 0.0003631248

Step 3: B2 
= 1.468306

B
3 

= 0.6622505

B
1 

= 52.57735

The regression equation is

Y = 52.57735 + 1.468306 X2 
+ 0.6622505 X

3

Step 4 : e ’e = 57.9045

R2 = 0.9786784

2 . 2
w = v = 5.790450

Step 5: var(B 1) = 5.226595

cov(B1,B2) 
= —0.04856520

cov(B1,B3) —0.09176431

var(B2) 
= 0.01471392

cov(B2, B3) 
= —0.001271410

var(B3) 
= 0.002102656

Step 6: Confidence limits for Y when X2 
= 6 and X

3 
= 50 are

94.49971 ± 2.506258 t

The point estimate for Y is 94.49971, and t is from a Student ’s t distri-

bution with ten degrees of freedom. For example, the 95 percent confidence

interval (r = 0.05; t = 2.228 from the 97.5 percent column of a t—

distribution table) is

-I



(88.91577,100.0837)

Step 7: Finally, with Y’ = 120, when X3 
= 50,

f = 2.155922 - 0.01471392

g = - 100. 7555 + 0.2242714

h = 1177.185 - 7.097254 t2

• The resulting limits for different significance levels are given in the

last two columns of Table 2. Since the point estimate of X
2 is 23.36715,

TABLE 2 — LIMITS FOR X
2 IN NUMERICAL EXAMPLE

r t Z Z
_ _ _  _ _ _ _  

e u
0.001 4.587 15.06735 36.94749

0.01 3.169 17.39803 31.65355

0.05 2.228 19.03294 28.80569

0.10 1.812 19.78620 27.66996

0.20 1.372 20.60728 26.53686

0.50 0.700 21.91731 24.92266

= 120 lies within the indicated confidence interval for Y so long as

is between Ze and Z. For example, Y ’ = 120 lies within a 95 percent
confidence interval for Y so long as X

2 is between 19.03294 and 28.80569.

Similarly , with Y’ = 120, when X2 
= 6,

f = 0.4385757 — 0.002102684

g = — 77.63273 + 0.1987855

h = 3435.462 — 10.96396
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The resulting limits at different significance levels are given in

Table 3. The point estimate of X
3 
is 88.50550. Hence, Y’ = 120 lies

TABLE 3 - LIMITS FOR X
3 
IN NUMERICAL EXAMPLE

r t 7. Z
• e U

0.001 4.587 69.75458 116.50926

0.01 3.169 75.06417 106.11853

0.05 2.228 78.78176 100.23987

0.10 1.812 80.48814 97.84187

0.20 1.372 82.34159 95.42050

0.50 0.700 85.28138 91.92384

within the confidence interval for Y so long as X is between Z and Z as3 e
• indicated in Table 3.

7. SUMMARY

Standard references on multiple linear regression give explicit

formulas for determination of the regression parameters, the estimated

covariance structure of these parameter estimates, and interval estimates

for the dependent variable (about a value predicted from the regression

equation), given values for the independent variables. When the regression

is performed in deviation from, the constant term must be calculated from

an equation which is generally given in such references. However, formulas

for calculation of the portions of the covariance matrix associated with

the constant term are generally missing. Such formulas are derived in

this report.

In addition , formulas are derived for limits, similar to confidence

limits, on the value of an independent variable, given values for the

dependent variable and each of the other independent variables. The proper

interpretation of such limits is also given.

The formulas developed here have been utilized in a pair of computer

programs, one a batch program and the other an interactive program . Both

27 
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programs use the IMSL routines to perform a stepwise multiple linear
regression. A future report will discuss the INSL routines used and the

programs themselves.
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